标签: AsyncTask

android多线程-AsyncTask之工作原理深入解析(下)

android多线程-AsyncTask之工作原理深入解析(下)

关联文章:
Android 多线程之HandlerThread 完全详解
Android 多线程之IntentService 完全详解
android多线程-AsyncTask之工作原理深入解析(上)
android多线程-AsyncTask之工作原理深入解析(下)

上篇分析AsyncTask的一些基本用法以及不同android版本下的区别,接着本篇我们就来全面剖析一下AsyncTask的工作原理。在开始之前我们先来了解一个多线程的知识点——Callable<V> 、Future<V>和FutureTask类

一、理解Callable<V> 、Future<V>以及FutureTask类

Callable<V>

Callable的接口定义如下:

public interface Callable<V> {   
      V   call()   throws Exception;   
}   

 

Callable接口声明了一个名称为call()的方法,该方法可以有返回值V,也可以抛出异常。Callable也是一个线程接口,它与Runnable的主要区别就是Callable在线程执行完成后可以有返回值而Runnable没有返回值,Runnable接口声明如下:

public interface Runnable {
    public abstract void run();
}

 

那么Callable接口如何使用呢,Callable需要和ExcutorService结合使用,其中ExecutorService也是一个线程池对象继承自Executor接口,对于线程池的知识点不了解可以看看我的另一篇文章,这里就不深入了,接着看看ExecutorService提供了那些方法供我们使用:

<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);

 

  • submit(Callable task),传递一个实现Callable接口的任务,并且返回封装了异步计算结果的Future。
  • submit(Runnable task, T result),传递一个实现Runnable接口的任务,并且指定了在调用Future的get方法时返回的result对象。
  • submit(Runnable task),传递一个实现Runnable接口的任务,并且返回封装了异步计算结果的Future。

因此我们只要创建好我们的线程对象(实现Callable接口或者Runnable接口),然后通过上面3个方法提交给线程池去执行即可。Callable接口介绍就先到这,再来看看Future时什么鬼。

Future<V>

Future接口是用来获取异步计算结果的,说白了就是对具体的Runnable或者Callable对象任务执行的结果进行获取(get()),取消(cancel()),判断是否完成等操作。其方法如下:

public interface Future<V> {
    //取消任务
    boolean cancel(boolean mayInterruptIfRunning);

    //如果任务完成前被取消,则返回true。
    boolean isCancelled();

    //如果任务执行结束,无论是正常结束或是中途取消还是发生异常,都返回true。
    boolean isDone();

    //获取异步执行的结果,如果没有结果可用,此方法会阻塞直到异步计算完成。
    V get() throws InterruptedException, ExecutionException;

    // 获取异步执行结果,如果没有结果可用,此方法会阻塞,但是会有时间限制,
    //如果阻塞时间超过设定的timeout时间,该方法将返回null。
    V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException;

}

 

总得来说Future有以下3点作用:

  • 能够中断执行中的任务
  • 判断任务是否执行完成
  • 获取任务执行完成后额结果。

但是Future只是接口,我们根本无法将其创建为对象,于官方又给我们提供了其实现类FutureTask,这里我们要知道前面两个接口的介绍都只为此类做铺垫,毕竟AsncyTask中使用到的对象是FutureTask。

FutureTask

先来看看FutureTask的实现:

public class FutureTask<V> implements RunnableFuture<V> {  
  • 1

显然FutureTask类实现了RunnableFuture接口,我们再看一下RunnableFuture接口的实现:

public interface RunnableFuture<V> extends Runnable, Future<V> {
    void run();
}
  • 1
  • 2
  • 3

从接口实现可以看出,FutureTask除了实现了Future接口外还实现了Runnable接口,因此FutureTask既可以当做Future对象也可是Runnable对象,当然FutureTask也就可以直接提交给线程池来执行。接着我们*关心的是如何创建FutureTask对象,实际上可以通过如下两个构造方法来构建FutureTask

public FutureTask(Callable<V> callable) {  
}  
public FutureTask(Runnable runnable, V result) {  
}  

 

从构造方法看出,我们可以把一个实现了Callable或者Runnable的接口的对象封装成一个FutureTask对象,然后通过线程池去执行,那么具体如何使用呢?简单案例,CallableDemo.java代码如下:


package com.zejian.Executor;
import java.util.concurrent.Callable;
/**
 * Callable接口实例 计算累加值大小并返回
 */
public class CallableDemo implements Callable<Integer> {

    private int sum;
    @Override
    public Integer call() throws Exception {
        System.out.println("Callable子线程开始计算啦!");
        Thread.sleep(2000);

        for(int i=0 ;i<5000;i++){
            sum=sum+i;
        }
        System.out.println("Callable子线程计算结束!");
        return sum;
    }
}

 

CallableTest.java测试代码如下:

package com.zejian.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
public class CallableTest {

public static void main(String[] args) {
//*种使用方式
//      //创建线程池
//      ExecutorService es = Executors.newSingleThreadExecutor();
//      //创建Callable对象任务
//      CallableDemo calTask=new CallableDemo();
//      //提交任务并获取执行结果
//      Future<Integer> future =es.submit(calTask);
//      //关闭线程池
//      es.shutdown();

    //第二中使用方式

    //创建线程池
    ExecutorService es = Executors.newSingleThreadExecutor();
    //创建Callable对象任务
    CallableDemo calTask=new CallableDemo();
    //创建FutureTask
    FutureTask<Integer> futureTask=new FutureTask<>(calTask);
    //执行任务
    es.submit(futureTask);
    //关闭线程池
    es.shutdown();
    try {
        Thread.sleep(2000);
    System.out.println("主线程在执行其他任务");

    if(futureTask.get()!=null){
        //输出获取到的结果
        System.out.println("futureTask.get()-->"+futureTask.get());
    }else{
        //输出获取到的结果
        System.out.println("futureTask.get()未获取到结果");
    }

    } catch (Exception e) {
        e.printStackTrace();
    }
    System.out.println("主线程在执行完成");
}
}

 

代码非常简单,注释也很明朗,这里我们分析一下第2种执行方式,先前声明一个CallableDemo类,该类实现了Callable接口,接着通过call方法去计算sum总值并返回。然后在测试类CallableTest中,把CallableDemo实例类封装成FutureTask对象并交给线程池去执行,*终执行结果将封装在FutureTask中,通过FutureTask#get()可以获取执行结果。*种方式则是直接把Callable实现类丢给线程池执行,其结果封装在Future实例中,第2种方式执行结果如下:

Callable子线程开始计算啦!
主线程在执行其他任务
Callable子线程计算结束!
futureTask.get()-->12497500
主线程在执行完成

 

ok~,到此我们对Callable、Future和FutureTask就介绍到这,有了这个知识铺垫,我们就可以愉快的撩开AsyncTask的内部工作原理了。

二、AsyncTask的工作原理完全解析

在上篇中,使用了如下代码来执行AsyncTask的异步任务:

new AysnTaskDiff("AysnTaskDiff-1").execute("");
  • 1

从代码可知,入口是execute方法,那我们就先看看execute的源码:

    @MainThread
    public final AsyncTask<Params, Progress, Result> execute(Params... params) {
        return executeOnExecutor(sDefaultExecutor, params);
    }

 

很明显execute方法只是一个壳子,直接调用了executeOnExecutor(sDefaultExecutor, params),其中sDefaultExecutor是一个串行的线程池,接着看看sDefaultExecutor内部实现:

private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
/**
 * An {@link Executor} that executes tasks one at a time in serial
 * order.  This serialization is global to a particular process.
 */
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();

//串行线程池类,实现Executor接口
private static class SerialExecutor implements Executor {
    final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
    Runnable mActive;

    public synchronized void execute(final Runnable r) {
        mTasks.offer(new Runnable() { //插入一个Runnble任务
            public void run() {
                try {
                    r.run();
                } finally {
                    scheduleNext();
                }
            }
        });
        //判断是否有Runnable在执行,没有就调用scheduleNext方法
        if (mActive == null) {
            scheduleNext();
        }
    }

    protected synchronized void scheduleNext() {
      //从任务队列mTasks中取出任务并放到THREAD_POOL_EXECUTOR线程池中执行.
      //由此也可见任务是串行进行的。
        if ((mActive = mTasks.poll()) != null) {
            THREAD_POOL_EXECUTOR.execute(mActive);
        }
    }
}

 

从源码可以看出,ArrayDeque是一个存放任务队列的容器(mTasks),任务Runnable传递进来后交给SerialExecutor的execute方法处理,SerialExecutor会把任务Runnable插入到任务队列mTasks尾部,接着会判断是否有Runnable在执行,没有就调用scheduleNext方法去执行下一个任务,接着交给THREAD_POOL_EXECUTOR线程池中执行,由此可见SerialExecutor并不是真正的线程执行者,它只是是保证传递进来的任务Runnable(实例是一个FutureTask)串行执行,而真正执行任务的是THREAD_POOL_EXECUTOR线程池,当然该逻辑也体现AsyncTask内部的任务是默认串行进行的。顺便看一下THREAD_POOL_EXECUTOR线程池的声明:

//CUP核数
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
//核心线程数量
private static final int CORE_POOL_SIZE = CPU_COUNT + 1;
//*大线程数量
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
//非核心线程的存活时间1s
private static final int KEEP_ALIVE = 1;
//线程工厂类
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
    private final AtomicInteger mCount = new AtomicInteger(1);

    public Thread newThread(Runnable r) {
        return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
    }
};
//线程队列,核心线程不够用时,任务会添加到该队列中,队列满后,会去调用非核心线程执行任务
private static final BlockingQueue<Runnable> sPoolWorkQueue =
        new LinkedBlockingQueue<Runnable>(128);

/**
 * An {@link Executor} that can be used to execute tasks in parallel.
 * 创建线程池
 */
public static final Executor THREAD_POOL_EXECUTOR
        = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
                TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);

 

ok~,关于sDefaultExecutor,我们先了解到这,回到之前execute方法内部调用的executeOnExecutor方法的步骤,先来看看executeOnExecutor都做了些什么事?其源码如下:

public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
            Params... params) {
   //判断在那种状态
   if (mStatus != Status.PENDING) {
       switch (mStatus) {
           case RUNNING:
               throw new IllegalStateException("Cannot execute task:"
                       + " the task is already running.");
           case FINISHED://只能执行一次!
               throw new IllegalStateException("Cannot execute task:"
                       + " the task has already been executed "
                       + "(a task can be executed only once)");
       }
   }

   mStatus = Status.RUNNING;
   //onPreExecute()在此执行了!!!
   onPreExecute();
   //参数传递给了mWorker.mParams
   mWorker.mParams = params;
   //执行mFuture任务,其中exec就是传递进来的sDefaultExecutor
   //把mFuture交给线程池去执行任务
   exec.execute(mFuture);

   return this;
    }

 

从executeOnExecutor方法的源码分析得知,执行任务前先会去判断当前AsyncTask的状态,如果处于RUNNING和FINISHED状态就不可再执行,直接抛出异常,只有处于Status.PENDING时,AsyncTask才会去执行。然后onPreExecute()被执行的,该方法可以用于线程开始前做一些准备工作。接着会把我们传递进来的参数赋值给 mWorker.mParams ,并执行开始执行mFuture任务,那么mWorker和mFuture到底是什么?先看看mWorker即WorkerRunnable的声明源码:

//抽象类
private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {

    Params[] mParams;

}

 

WorkerRunnable抽象类实现了Callable接口,因此WorkerRunnable本质上也算一个Callable对象,其内部还封装了一个mParams的数组参数,因此我们在外部执行execute方法时传递的可变参数*终会赋值给WorkerRunnable的内部数组mParams,这些参数*后会传递给doInBackground方法处理,这时我们发现doInBackground方法也是在WorkerRunnable的call方法中被调用的,看看其源码如下:

public AsyncTask() {
   //创建WorkerRunnable mWorker,本质上就是一个实现了Callable接口对象
    mWorker = new WorkerRunnable<Params, Result>() {
        public Result call() throws Exception {
            //设置标志
            mTaskInvoked.set(true);

         Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
            //执行doInBackground,并传递mParams参数
            Result result = doInBackground(mParams);
            Binder.flushPendingCommands();
            //执行完成调用postResult方法更新结果
            return postResult(result);
        }
    };
//把mWorker(即Callable实现类)封装成FutureTask实例
//*终执行结果也就封装在FutureTask中
    mFuture = new FutureTask<Result>(mWorker) {
        //任务执行完成后被调用
        @Override
        protected void done() {
            try {
             //如果还没更新结果通知就执行postResultIfNotInvoked
                postResultIfNotInvoked(get());
            } catch (InterruptedException e) {
                android.util.Log.w(LOG_TAG, e);
            } catch (ExecutionException e) {
                throw new RuntimeException("An error occurred while executing doInBackground()",
                        e.getCause());
            } catch (CancellationException e) {
                //抛异常
                postResultIfNotInvoked(null);
            }
        }
    };
}

 

可以看到在初始化AsyncTask时,不仅创建了mWorker(本质实现了Callable接口的实例类)而且也创建了FutureTask对象,并把mWorker对象封装在FutureTask对象中,*后FutureTask对象将在executeOnExecutor方法中通过线程池去执行。给出下图协助理解:
这里写图片描述

AsynTask在初始化时会创建mWorker实例对象和FutureTask实例对象,mWorker是一个实现了Callable线程接口并封装了传递参数的实例对象,然后mWorker实例会被封装成FutureTask实例中。在AsynTask创建后,我们调用execute方法去执行异步线程,其内部又直接调用了executeOnExecutor方法,并传递了线程池exec对象和执行参数,该方法内部通过线程池exec对象去执行mFuture实例,这时mWorker内部的call方法将被执行并调用doInBackground方法,*终通过postResult去通知更新结果。关于postResult方法,其源码如下:

private Result postResult(Result result) {
    @SuppressWarnings("unchecked")
    Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
            new AsyncTaskResult<Result>(this, result));
    message.sendToTarget();
    return result;
}

 

显然是通过Handler去执行结果更新的,在执行结果成返回后,会把result封装到一个AsyncTaskResult对象中,*后把MESSAGE_POST_RESULT标示和AsyncTaskResult存放到Message中并发送给Handler去处理,这里我们先看看AsyncTaskResult的源码:

private static class AsyncTaskResult<Data> {
        final AsyncTask mTask;
        final Data[] mData;

        AsyncTaskResult(AsyncTask task, Data... data) {
            mTask = task;
            mData = data;
        }
    }

 

显然AsyncTaskResult封装了执行结果的数组以及AsyncTask本身,这个没什么好说的,接着看看AsyncTaskResult被发送到handler后如何处理的。

private static class InternalHandler extends Handler {
    public InternalHandler() {
        //获取主线程的Looper传递给当前Handler,这也是为什么AsyncTask只能在主线程创建并执行的原因
        super(Looper.getMainLooper());
    }

    @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
    @Override
    public void handleMessage(Message msg) {
    //获取AsyncTaskResult
        AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
        switch (msg.what) {
            //执行完成
            case MESSAGE_POST_RESULT:
                // There is only one result
                result.mTask.finish(result.mData[0]);
                break;
                //更新进度条的标志
            case MESSAGE_POST_PROGRESS:
            //执行onProgressUpdate方法,自己实现。
                result.mTask.onProgressUpdate(result.mData);
                break;
        }
    }
}

 

从Handler的源码分析可知,该handler绑定的线程为主线线程,这也就是为什么AsyncTask必须在主线程创建并执行的原因了。接着通过handler发送过来的不同标志去决定执行那种结果,如果标示为MESSAGE_POST_RESULT则执行AsyncTask的finish方法并传递执行结果给该方法,finish方法源码如下:

private void finish(Result result) {
        if (isCancelled()) {//判断任务是否被取消
            onCancelled(result);
        } else {//执行onPostExecute(result)并传递result结果
            onPostExecute(result);
        }
        //更改AsyncTask的状态为已完成
        mStatus = Status.FINISHED;
    }

 

该方法先判断任务是否被取消,如果没有被取消则去执行onPostExecute(result)方法,外部通过onPostExecute方法去更新相关信息,如UI,消息通知等。*后更改AsyncTask的状态为已完成。到此AsyncTask的全部流程执行完。
这里还有另一种标志MESSAGE_POST_PROGRESS,该标志是我们在doInBackground方法中调用publishProgress方法时发出的,该方法原型如下:

protected final void publishProgress(Progress... values) {
    if (!isCancelled()) {
    //发送MESSAGE_POST_PROGRESS,通知更新进度条
        getHandler().obtainMessage(MESSAGE_POST_PROGRESS,
                new AsyncTaskResult<Progress>(this, values)).sendToTarget();
    }
}

 

ok~,AsyncTask的整体流程基本分析完,*后来个总结吧:当我们调用execute(Params… params)方法后,其内部直接调用executeOnExecutor方法,接着onPreExecute()被调用方法,执行异步任务的WorkerRunnable对象(实质为Callable对象)*终被封装成FutureTask实例,FutureTask实例将由线程池sExecutor执行去执行,这个过程中doInBackground(Params… params)将被调用(在WorkerRunnable对象的call方法中被调用),如果我们覆写的doInBackground(Params… params)方法中调用了publishProgress(Progress… values)方法,则通过InternalHandler实例sHandler发送一条MESSAGE_POST_PROGRESS消息,更新进度,sHandler处理消息时onProgressUpdate(Progress… values)方法将被调用;*后如果FutureTask任务执行成功并返回结果,则通过postResult方法发送一条MESSAGE_POST_RESULT的消息去执行AsyncTask的finish方法,在finish方法内部onPostExecute(Result result)方法被调用,在onPostExecute方法中我们可以更新UI或者释放资源等。这既是AsyncTask内部的工作流程,可以说是Callable+FutureTask+Executor+Handler内部封装。结尾我们献上一张执行流程,协助大家理解整个流程:
这里写图片描述
好~,本篇到此结束。。。

android多线程-AsyncTask之工作原理深入解析(上)

android多线程-AsyncTask之工作原理深入解析(上)

关联文章:
Android 多线程之HandlerThread 完全详解
Android 多线程之IntentService 完全详解
android多线程-AsyncTask之工作原理深入解析(上)
android多线程-AsyncTask之工作原理深入解析(下)

前两篇我们分析android的异步线程类HandlerThread与IntentService,它们都是android系统独有的线程类,而android中还有另一个比较重要的异步线程类,它就是AsyncTask。本篇我们将从以下3点深入分析AsyncTask。

  • AsyncTask的常规使用分析以及案例实现
  • AsyncTask在不同android版本的下的差异
  • AsyncTask的工作原理流程

一、AsyncTask的常规使用分析以及案例实现

AsyncTask是一种轻量级的异步任务类,它可以在线程池中执行后台任务,然后会把执行的进度和*终结果传递给主线程并更新UI。AsyncTask本身是一个抽象类它提供了Params、Progress、Result 三个泛型参数,其类声明如下:

public abstract class AsyncTask<Params, Progress, Result> {

由类声明可以看出AsyncTask抽象类确实定义了三种泛型类型 Params,Progress和Result,它们分别含义如下:

  • Params :启动任务执行的输入参数,如HTTP请求的URL
  • Progress : 后台任务执行的百分比
  • Result :后台执行任务*终返回的结果类型

如果AsyncTask不需要传递具体参数,那么这三个泛型参数可以使用Void代替。好~,我们现在创建一个类继承自AsyncTask如下:

package com.zejian.handlerlooper;

import android.graphics.Bitmap;
import android.os.AsyncTask;

/**
 * Created by zejian
 * Time 16/9/4.
 * Description:
 */
public class DownLoadAsyncTask extends AsyncTask<String,Integer,Bitmap> {

    /**
     * onPreExecute是可以选择性覆写的方法
     * 在主线程中执行,在异步任务执行之前,该方法将会被调用
     * 一般用来在执行后台任务前对UI做一些标记和准备工作,
     * 如在界面上显示一个进度条。
     */
    @Override
    protected void onPreExecute() {
        super.onPreExecute();
    }

    /**
     * 抽象方法必须覆写,执行异步任务的方法
     * @param params
     * @return
     */
    @Override
    protected Bitmap doInBackground(String... params) {
        return null;
    }

    /**
     * onProgressUpdate是可以选择性覆写的方法
     * 在主线程中执行,当后台任务的执行进度发生改变时,
     * 当然我们必须在doInBackground方法中调用publishProgress()
     * 来设置进度变化的值
     * @param values
     */
    @Override
    protected void onProgressUpdate(Integer... values) {
        super.onProgressUpdate(values);
    }

    /**
     * onPostExecute是可以选择性覆写的方法
     * 在主线程中执行,在异步任务执行完成后,此方法会被调用
     * 一般用于更新UI或其他必须在主线程执行的操作,传递参数bitmap为
     * doInBackground方法中的返回值
     * @param bitmap
     */
    @Override
    protected void onPostExecute(Bitmap bitmap) {
        super.onPostExecute(bitmap);
    }

    /**
     * onCancelled是可以选择性覆写的方法
     * 在主线程中,当异步任务被取消时,该方法将被调用,
     * 要注意的是这个时onPostExecute将不会被执行
     */
    @Override
    protected void onCancelled() {
        super.onCancelled();
    }
}

 

如代码所示,我们创建一个继承自AsyncTask的异步线程类,在泛型参数方面,传递String类型(Url) , Integer类型(显示进度),Bitmap类型作为返回值。接着重写了抽象方法doInBackground(),以及覆写了onPreExecute()、onProgressUpdate()、onPostExecute()、onCancelled()等方法,它们的主要含义如下:

  • (1)onPreExecute(), 该方法在主线程中执行,将在execute(Params… params)被调用后执行,一般用来做一些UI的准备工作,如在界面上显示一个进度条。
  • (2)doInBackground(Params…params), 抽象方法,必须实现,该方法在线程池中执行,用于执行异步任务,将在onPreExecute方法执行后执行。其参数是一个可变类型,表示异步任务的输入参数,在该方法中还可通过publishProgress(Progress… values)来更新实时的任务进度,而publishProgress方法则会调用onProgressUpdate方法。此外doInBackground方法会将计算的返回结果传递给onPostExecute方法。
  • (3)onProgressUpdate(Progress…),在主线程中执行,该方法在publishProgress(Progress… values)方法被调用后执行,一般用于更新UI进度,如更新进度条的当前进度。
  • (4)onPostExecute(Result), 在主线程中执行,在doInBackground 执行完成后,onPostExecute 方法将被UI线程调用,doInBackground 方法的返回值将作为此方法的参数传递到UI线程中,并执行一些UI相关的操作,如更新UI视图。
  • (5)onCancelled(),在主线程中执行,当异步任务被取消时,该方法将被调用,要注意的是这个时onPostExecute将不会被执行。

我们这里再强调一下它们的执行顺序,onPreExecute方法先执行,接着是doInBackground方法,在doInBackground中如果调用了publishProgress方法,那么onProgressUpdate方法将会被执行,*后doInBackground方法执行后完后,onPostExecute方法将被执行。说了这么多,我们还没说如何启动AsyncTask呢,其实可以通过execute方法启动异步线程,其方法声明如下:

public final AsyncTask<Params, Progress, Result> execute(Params... params)
  • 1

该方法是一个final方法,参数类型是可变类型,实际上这里传递的参数和doInBackground(Params…params)方法中的参数是一样的,该方法*终返回一个AsyncTask的实例对象,可以使用该对象进行其他操作,比如结束线程之类的。启动范例如下:

new DownLoadAsyncTask().execute(url1,url2,url3);
  • 1

当然除了以上介绍的内容外,我们在使用AsyncTask时还必须遵守一些规则,以避免不必要的麻烦。

  • (1) AsyncTask的实例必须在主线程(UI线程)中创建 ,execute方法也必须在主线程中调用
  • (2) 不要在程序中直接的调用onPreExecute(), onPostExecute(Result),doInBackground(Params…), onProgressUpdate(Progress…)这几个方法
  • (3) 不能在doInBackground(Params… params)中更新UI
  • (5) 一个AsyncTask对象只能被执行一次,也就是execute方法只能调用一次,否则多次调用时将会抛出异常

到此,AsyncTask的常规方法说明和使用以及注意事项全部介绍完了,下面我们来看一个下载案例,该案例是去下载一张大图,并实现下载实时进度。先来看看AsynTaskActivity.java的实现:

package com.zejian.handlerlooper;

import android.content.Context;
import android.os.AsyncTask;
import android.os.Environment;
import android.os.PowerManager;
import android.widget.Toast;

import com.zejian.handlerlooper.util.LogUtils;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;

/**
 * Created by zejian
 * Time 16/9/4.
 * Description:
 */
public class DownLoadAsyncTask extends AsyncTask<String, Integer, String> {
    private PowerManager.WakeLock mWakeLock;
    private int ValueProgress=100;
    private Context context;


    public DownLoadAsyncTask(Context context){
        this.context=context;
    }

    /**
     * sync method which download file
     * @param params
     * @return
     */
    @Override
    protected String doInBackground(String... params) {
        InputStream input = null;
        OutputStream output = null;
        HttpURLConnection connection = null;
        try {
            URL url = new URL(params[0]);
            connection = (HttpURLConnection) url.openConnection();
            connection.connect();
            // expect HTTP 200 OK, so we don't mistakenly save error report
            // instead of the file
            if (connection.getResponseCode() != HttpURLConnection.HTTP_OK) {
                return "Server returned HTTP " + connection.getResponseCode()
                        + " " + connection.getResponseMessage();
            }
            // this will be useful to display download percentage
            // might be -1: server did not report the length
            int fileLength = connection.getContentLength();
            // download the file
            input = connection.getInputStream();
            //create output
            output = new FileOutputStream(getSDCardDir());
            byte data[] = new byte[4096];
            long total = 0;
            int count;
            while ((count = input.read(data)) != -1) {
                // allow canceling with back button
                if (isCancelled()) {
                    input.close();
                    return null;
                }
                total += count;
                // publishing the progress....
                if (fileLength > 0) // only if total length is known
                    publishProgress((int) (total * 100 / fileLength));
                //
                Thread.sleep(100);
                output.write(data, 0, count);
            }
        } catch (Exception e) {
            return e.toString();
        } finally {
            try {
                if (output != null)
                    output.close();
                if (input != null)
                    input.close();
            } catch (IOException ignored) {
            }
            if (connection != null)
                connection.disconnect();
        }

        return null;
    }

    @Override
    protected void onPreExecute() {
        super.onPreExecute();
        // take CPU lock to prevent CPU from going off if the user
        // presses the power button during download
        PowerManager pm = (PowerManager) context.getSystemService(Context.POWER_SERVICE);
        mWakeLock = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
                getClass().getName());
        mWakeLock.acquire();
        //Display progressBar
//        progressBar.setVisibility(View.VISIBLE);
    }

    @Override
    protected void onPostExecute(String values) {
        super.onPostExecute(values);
        mWakeLock.release();
        if (values != null)
            LogUtils.e("Download error: "+values);
        else {
            Toast.makeText(context, "File downloaded", Toast.LENGTH_SHORT).show();
        }
    }

    /**
     * set progressBar
     * @param values
     */
    @Override
    protected void onProgressUpdate(Integer... values) {
        super.onProgressUpdate(values);
//        progressBar.setmProgress(values[0]);
        //update progressBar
        if(updateUI!=null){
            updateUI.UpdateProgressBar(values[0]);
        }
    }

    /**
     * get SD card path
     * @return
     */
    public File getSDCardDir(){
        if(Environment.MEDIA_MOUNTED.equals(Environment.getExternalStorageState())){
            // 创建一个文件夹对象,赋值为外部存储器的目录
            String dirName = Environment.getExternalStorageDirectory()+"/MyDownload/";
            File f = new File(dirName);
            if(!f.exists()){
                f.mkdir();
            }
            File downloadFile=new File(f,"new.jpg");
            return downloadFile;
        }
        else{
            LogUtils.e("NO SD Card!");
            return null;

        }

    }

    public UpdateUI updateUI;


    public interface UpdateUI{
        void UpdateProgressBar(Integer values);
    }

    public void setUpdateUIInterface(UpdateUI updateUI){
        this.updateUI=updateUI;
    }
}

 

简单说明一下代码,在onPreExecute方法中,可以做了一些准备工作,如显示进度圈,这里为了演示方便,进度圈在常态下就是显示的,同时,我们还锁定了CPU,防止下载中断,而在doInBackground方法中,通过HttpURLConnection对象去下载图片,然后再通过int fileLength =connection.getContentLength();代码获取整个下载图片的大小并使用publishProgress((int) (total * 100 / fileLength));更新进度,进而调用onProgressUpdate方法更新进度条。*后在onPostExecute方法中释放CPU锁,并通知是否下载成功。接着看看Activity的实现:
activity_download.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:customView="http://schemas.android.com/apk/res-auto"
    android:layout_width="match_parent"
    android:layout_height="match_parent">

    <com.zejian.handlerlooper.util.LoadProgressBarWithNum
        android:id="@+id/progressbar"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        customView:progress_radius="100dp"
        android:layout_centerInParent="true"
        customView:progress_strokeWidth="40dp"
        customView:progress_text_size="35sp"
        customView:progress_text_visibility="visible"
        customView:progress_value="0"
        />

    <Button
        android:id="@+id/downloadBtn"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="start download"
        android:layout_centerHorizontal="true"
        android:layout_below="@id/progressbar"
        android:layout_marginTop="40dp"
        />
</RelativeLayout>

 

AsynTaskActivity.java

package com.zejian.handlerlooper;

import android.Manifest;
import android.app.Activity;
import android.content.pm.PackageManager;
import android.os.Bundle;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.view.View;
import android.widget.Button;

import com.zejian.handlerlooper.util.LoadProgressBarWithNum;
import com.zejian.handlerlooper.util.LogUtils;

/**
 * Created by zejian
 * Time 16/9/4.
 * Description:AsynTaskActivity
 */
public class AsynTaskActivity extends Activity implements DownLoadAsyncTask.UpdateUI {
    private static int WRITE_EXTERNAL_STORAGE_REQUEST_CODE=0x11;
    private static String DOWNLOAD_FILE_JPG_URL="http://img2.3lian.com/2014/f6/173/d/51.jpg";
    private LoadProgressBarWithNum progressBar;

    private Button downloadBtn;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_download);
        progressBar= (LoadProgressBarWithNum) findViewById(R.id.progressbar);
        downloadBtn= (Button) findViewById(R.id.downloadBtn);
        //create DownLoadAsyncTask
        final DownLoadAsyncTask  downLoadAsyncTask= new DownLoadAsyncTask(AsynTaskActivity.this);
        //set Interface
        downLoadAsyncTask.setUpdateUIInterface(this);
        //start download
        downloadBtn.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                //execute
                downLoadAsyncTask.execute(DOWNLOAD_FILE_JPG_URL);
            }
        });

        //android 6.0 权限申请
        if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_EXTERNAL_STORAGE)
                != PackageManager.PERMISSION_GRANTED) {
            //android 6.0 API 必须申请WRITE_EXTERNAL_STORAGE权限
            ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE},
                    WRITE_EXTERNAL_STORAGE_REQUEST_CODE);
        }
    }


    @Override
    public void onRequestPermissionsResult(int requestCode, String[] permissions, int[] grantResults) {
        super.onRequestPermissionsResult(requestCode, permissions, grantResults);
        doNext(requestCode,grantResults);
    }

    private void doNext(int requestCode, int[] grantResults) {
        if (requestCode == WRITE_EXTERNAL_STORAGE_REQUEST_CODE) {
            if (grantResults[0] == PackageManager.PERMISSION_GRANTED) {
                // Permission Granted
                LogUtils.e("Permission Granted");
            } else {
                // Permission Denied
                LogUtils.e("Permission Denied");
            }
        }
    }

    /**
     * update progressBar
     * @param values
     */
    @Override
    public void UpdateProgressBar(Integer values) {
        progressBar.setmProgress(values);;
    }
}

 

在AsynTaskActivity中实现了更新UI的接口DownLoadAsyncTask.UpdateUI,用于更新主线程的progressBar的进度,由于使用的测试版本是android6.0,涉及到外部SD卡读取权限的申请,所以在代码中对SD卡权限进行了特殊处理(这点不深究,不明白可以google一下),LoadProgressBarWithNum是一个自定义的进度条控件。ok~,*后看看我们的运行结果:
%title插图%num
效果符合预期,通过这个案例,相信我们对AsyncTask的使用已相当清晰了。基本使用到此,然后再来聊聊AsyncTask在不同android版本中的差异。

二、AsyncTask在不同android版本的下的差异

这里我们主要区分一下android3.0前后版本的差异,在android 3.0之前,AsyncTask处理任务时默认采用的是线程池里并行处理任务的方式,而在android 3.0之后 ,为了避免AsyncTask处理任务时所带来的并发错误,AsyncTask则采用了单线程串行执行任务。但是这并不意味着android 3.0之后只能执行串行任务,我们仍然可以采用AsyncTask的executeOnExecutor方法来并行执行任务。接下来,编写一个案例,分别在android 2.3.3 和 android 6.0上执行,然后打印输出日志。代码如下:

package com.zejian.handlerlooper;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import com.zejian.handlerlooper.util.LogUtils;
import java.text.SimpleDateFormat;
import java.util.Date;

/**
 * Created by zejian
 * Time 16/9/5.
 * Description:
 */
public class ActivityAsyncTaskDiff extends Activity {
    private Button btn;
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_async_diff);
        btn= (Button) findViewById(R.id.btn);
        btn.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                new AysnTaskDiff("AysnTaskDiff-1").execute("");
                new AysnTaskDiff("AysnTaskDiff-2").execute("");
                new AysnTaskDiff("AysnTaskDiff-3").execute("");
                new AysnTaskDiff("AysnTaskDiff-4").execute("");
                new AysnTaskDiff("AysnTaskDiff-5").execute("");
            }
        });
    }

    private static class AysnTaskDiff extends AsyncTask<String ,Integer ,String>{
        private String name;
        public AysnTaskDiff(String name){
            super();
            this.name=name;
        }

        @Override
        protected String doInBackground(String... params) {
            try {
                Thread.sleep(2000);
            }catch (Exception ex){
                ex.printStackTrace();
            }

            return name;
        }

        @Override
        protected void onPostExecute(String s) {
            super.onPostExecute(s);
            SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            LogUtils.e(s+" execute 执行完成时间:"+df.format(new Date()));
        }
    }

}

 

案例代码比较简单,不过多分析,我们直接看在android 2.3.3 和 android 6.0上执行的结果,其中android 2.3.3上执行Log打印如下:
%title插图%num
在 android 6.0上执行Log打印如下:
%title插图%num
从打印log可以看出AsyncTask在android 2.3.3上确实是并行执行任务的,而在 android 6.0上则是串行执行任务。那么了解这点有什么用呢?其实以前我也只是知道这回事而已,不过*近在SDK开发中遇到了AsyncTask的开发问题,产生问题的场景是这样的,我们团队在SDK中使用了AsyncTask作为网络请求类,因为现在大部分系统都是在Android 3.0以上的系统运行的,所以默认就是串行运行,一开始SDK在海外版往外提供也没有出现什么问题,直到后面我们提供国内一个publisher海外版本时,问题就出现了,该publisher接入我们的SDK后,他们的应用网络加载速度变得十分慢,后来他们一直没排查出啥问题,我们这边也在懵逼中……直到我们双方都找到一个点,那就是publisher的应用和我们的SDK使用的都是AsyncTask作为网络请求,那么问题就来,我们SDK是在在Application启动时触发网络的,而他们的应用也是启动Activity时去访问网络,所以SDK比应用先加载网络数据,但是!!!AsyncTask默认是串行执行的,所以!!只有等我们的SDK网络加载完成后,他们应用才开始加载网络数据,这就造成应用的网络加载延迟十分严重了。后面我们SDK在内部把AsyncTask改为并行任务后问题也就解决了(当然这也是SDK的一个BUG,考虑欠佳)。在Android 3.0之后我们可以通过下面代码让AsyncTask执行并行任务,其AsyncTask.THREAD_POOL_EXECUTOR为AsyncTask的内部线程池。

new AysnTaskDiff("AysnTaskDiff-5").executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR,"");
  • 1

*个参数传递是线程池,一般使用AsyncTask内部提供的线程池即可(也可以自己创建),第二个参数,就是*终会传递给doInBackground方法的可变参数,这里不传,所以直接给了空白符。执行效果就不再演示了,大家可以自行测试一下。
ok~,到此AsyncTask在不同android版本中的差异也分析完,感觉文章有点长了,那么AsyncTask工作原理分析就放到下篇吧。

Android 内存泄漏常见情况2 内部类泄漏

线程持久化

Java中的Thread有一个特点就是她们都是直接被GC Root所引用,也就是说Dalvik虚拟机对所有被激活状态的线程都是持有强引用,导致GC永远都无法回收掉这些线程对象,除非线程被手动停止并置为null或者用户直接kill进程操作。所以当使用线程时,一定要考虑在Activity退出时,及时将线程也停止并释放掉

内存泄漏1:AsyncTask

void startAsyncTask() {
    new AsyncTask<Void, Void, Void>() {
        @Override protected Void doInBackground(Void... params) {
            while(true);
        }
    }.execute();
}

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
View aicButton = findViewById(R.id.at_button);
aicButton.setOnClickListener(new View.OnClickListener() {
    @Override public void onClick(View v) {
        startAsyncTask();
        nextActivity();
    }
});

 

使用LeakCanary检测到的内存泄漏:

这里写图片描述

为什么?
上面代码在activity中创建了一个匿名类AsyncTask,匿名类和非静态内部类相同,会持有外部类对象,这里也就是activity,因此如果你在Activity里声明且实例化一个匿名的AsyncTask对象,则可能会发生内存泄漏,如果这个线程在Activity销毁后还一直在后台执行,那这个线程会继续持有这个Activity的引用从而不会被GC回收,直到线程执行完成。

怎么解决?
自定义静态AsyncTask类,并且让AsyncTask的周期和Activity周期保持一致,也就是在Activity生命周期结束时要将AsyncTask cancel掉。

内存泄漏2:Handler

非静态内部类导致的内存泄露在Android开发中有一种典型的场景就是使用Handler,很多开发者在使用Handler是这样写的:

public class MainActivity extends AppCompatActivity {
    
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        start();
    }

    private void start() {
        Message msg = Message.obtain();
        msg.what = 1;
        mHandler.sendMessageDelayed(msg,1000);
    }

    private Handler mHandler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            if (msg.what == 1) {
                // 做相应逻辑
            }
        }
    };
}

也许有人会说,mHandler并未作为静态变量持有Activity引用,生命周期可能不会比Activity长,应该不一定会导致内存泄露呢,显然不是这样的!

熟悉Handler消息机制的都知道,mHandler会作为成员变量保存在发送的消息msg中,即msg持有mHandler的引用,而mHandlerActivity的非静态内部类实例,即mHandler持有Activity的引用,那么我们就可以理解为msg间接持有Activity的引用。msg被发送后先放到消息队列MessageQueue中,然后等待Looper的轮询处理(MessageQueueLooper都是与线程相关联的,MessageQueueLooper引用的成员变量,而Looper是保存在ThreadLocal中的)。那么当Activity退出后,msg可能仍然存在于消息对列MessageQueue中未处理或者正在处理,那么这样就会导致Activity无法被回收,以致发生Activity的内存泄露。

通常在Android开发中如果要使用内部类,但又要规避内存泄露,一般都会采用静态内部类+弱引用的方式。

public class MainActivity extends AppCompatActivity {

    private Handler mHandler;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        mHandler = new MyHandler(this);
        start();
    }

    private void start() {
        Message msg = Message.obtain();
        msg.what = 1;
        mHandler.sendMessage(msg);
    }

    private static class MyHandler extends Handler {

        private WeakReference<MainActivity> activityWeakReference;

        public MyHandler(MainActivity activity) {
            activityWeakReference = new WeakReference<>(activity);
        }

        @Override
        public void handleMessage(Message msg) {
            MainActivity activity = activityWeakReference.get();
            if (activity != null) {
                if (msg.what == 1) {
                    // 做相应逻辑
                }
            }
        }
    }
}

mHandler通过弱引用的方式持有Activity,当GC执行垃圾回收时,遇到Activity就会回收并释放所占据的内存单元。这样就不会发生内存泄露了。

上面的做法确实避免了Activity导致的内存泄露,发送的msg不再已经没有持有Activity的引用了,但是msg还是有可能存在消息队列MessageQueue中,所以更好的是在Activity销毁时就将mHandler的回调和发送的消息给移除掉。

@Override
protected void onDestroy() {
    super.onDestroy();
    mHandler.removeCallbacksAndMessages(null);
}

为什么?

创建的Handler对象为匿名类,匿名类默认持有外部类activity, Handler通过发送Message与主线程交互,Message发出之后是存储在MessageQueue中的,有些Message也不是马上就被处理的。这时activity被handler持有
handler被message持有,message被messagequeue持有,message queue被loop持有,主线程的loop是全局存在的,这时就造成activity被临时性持久化,造成临时性内存泄漏

怎么解决?
可以由上面的结论看出,产生泄漏的根源在于匿名类持有Activity的引用,因此可以自定义Handler和Runnable类并声明成静态的内部类,来解除和Activity的引用。或者在activity 结束时,将发送的Message移除

内存泄漏3:Thread

代码如下:
MainActivity.java

void spawnThread() {
    new Thread() {
        @Override public void run() {
            while(true);
        }
    }.start();
}

View tButton = findViewById(R.id.t_button);
tButton.setOnClickListener(new View.OnClickListener() {
  @Override public void onClick(View v) {
      spawnThread();
      nextActivity();
  }
});

 

为什么?
Java中的Thread有一个特点就是她们都是直接被GC Root所引用,也就是说Dalvik虚拟机对所有被激活状态的线程都是持有强引用,导致GC永远都无法回收掉这些线程对象,除非线程被手动停止并置为null或者用户直接kill进程操作。看到这相信你应该也是心中有答案了吧 : 我在每一个MainActivity中都创建了一个线程,此线程会持有MainActivity的引用,即使退出Activity当前线程因为是直接被GC Root引用所以不会被回收掉,导致MainActivity也无法被GC回收

怎么解决?
当使用线程时,一定要考虑在Activity退出时,及时将线程也停止并释放掉

内存泄漏4:Timer Tasks

TimerTimerTask在Android中通常会被用来做一些计时或循环任务,比如实现无限轮播的ViewPager

public class MainActivity extends AppCompatActivity {

    private ViewPager mViewPager;
    private PagerAdapter mAdapter;
    private Timer mTimer;
    private TimerTask mTimerTask;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        init();
        mTimer.schedule(mTimerTask, 3000, 3000);
    }

    private void init() {
        mViewPager = (ViewPager) findViewById(R.id.view_pager);
        mAdapter = new ViewPagerAdapter();
        mViewPager.setAdapter(mAdapter);

        mTimer = new Timer();
        mTimerTask = new TimerTask() {
            @Override
            public void run() {
                MainActivity.this.runOnUiThread(new Runnable() {
                    @Override
                    public void run() {
                        loopViewpager();
                    }
                });
            }
        };
    }

    private void loopViewpager() {
        if (mAdapter.getCount() > 0) {
            int curPos = mViewPager.getCurrentItem();
            curPos = (++curPos) % mAdapter.getCount();
            mViewPager.setCurrentItem(curPos);
        }
    }

    private void stopLoopViewPager() {
        if (mTimer != null) {
            mTimer.cancel();
            mTimer.purge();
            mTimer = null;
        }
        if (mTimerTask != null) {
            mTimerTask.cancel();
            mTimerTask = null;
        }
    }

    @Override
    protected void onDestroy() {
        super.onDestroy();
        stopLoopViewPager();
    }
}

当我们Activity销毁的时,有可能Timer还在继续等待执行TimerTask,它持有Activity的引用不能被回收,因此当我们Activity销毁的时候要立即cancelTimerTimerTask,以避免发生内存泄漏。

为什么?
这里内存泄漏在于Timer和TimerTask没有进行Cancel,从而导致Timer和TimerTask一直引用外部类Activity。

怎么解决?
在适当的时机进行Cancel。

内存泄漏5:属性动画造成内存泄露

动画同样是一个耗时任务,比如在Activity中启动了属性动画(ObjectAnimator),但是在销毁的时候,没有调用cancle方法,虽然我们看不到动画了,但是这个动画依然会不断地播放下去,动画引用所在的控件,所在的控件引用Activity,这就造成Activity无法正常释放。因此同样要在Activity销毁的时候cancel掉属性动画,避免发生内存泄漏。

@Override
protected void onDestroy() {
    super.onDestroy();
    mAnimator.cancel();
}

谈谈你对android多线程的理解

在android中,需要处理一些耗时的操作,这些操作不能运行在UI线程中,不然会造成线程的阻塞,所以就需要多线程操作

在日常项目中比较常用的多线程操作主要有:

1.Handler

2.AsyncTask

3.IntentService

一:handler的理解

优点:对于对后台任务时,简单清晰

缺点:对于操作单个后台任务,代码过于繁琐

具体操作:

在主线程中创建Handler对象并实现handlmessage()方法,
创建runnable线程,先在线程中执行耗时操作,
开启一个线程会相应的产生一个looper,在初始化looper的时候会创建一个消息队列MessageQueue();
执行完耗时操作,通过handler将消息发送到消息队列中、、looper轮询消息队列将消息取出来交给Handler,
Handler接收到取出来的消息,并根据消息类型做出相应的处理

二:AsyncTask的理解

优点:操作简单方便,过程可控

缺点:对于多异步操作更新UI会变得很繁琐

具体操作:

onPreExecute()运行在主线程中,开启线程前的准备操作,
doInBackground()运行在子线程中,
onPreExecute()之后的操作,用于处理耗时操作,通过调用publishProcess()向 onProcessUpdata()推送消息
onProcessUpdata()运行在主线程中,当调用 publishProcess()方法时就会开启此方法,接收到推送过来的数据,更新UI进度页面
onPostExecute()运行在主线程中,当子线程耗时操作执行完毕后会调用此方法, doInBackground()返回的参数传递到这里来用于更新UI
调用execute()方法开启AsyncTask,类似runnable的start()方法

三:IntentService的理解

IntentService和普通的Service区别在于,IntentService在oncreate()方法中单独开启一个线程用于耗时操作
通过onHandleIntent(Intent intent)方法来处理耗时操作
在耗时操作执行完毕之后,会自动关闭service不用手动关闭
如果同时new出多个IntentService对象进行耗时操作,oncreate()和ondestory()方法会执行一次,onstart()、onstartcommand()、onHandleIntent()会执行多次。
执行完毕自动关闭service

友情链接: SITEMAP | 旋风加速器官网 | 旋风软件中心 | textarea | 黑洞加速器 | jiaohess | 老王加速器 | 烧饼哥加速器 | 小蓝鸟 | tiktok加速器 | 旋风加速度器 | 旋风加速 | quickq加速器 | 飞驰加速器 | 飞鸟加速器 | 狗急加速器 | hammer加速器 | trafficace | 原子加速器 | 葫芦加速器 | 麦旋风 | 油管加速器 | anycastly | INS加速器 | INS加速器免费版 | 免费vqn加速外网 | 旋风加速器 | 快橙加速器 | 啊哈加速器 | 迷雾通 | 优途加速器 | 海外播 | 坚果加速器 | 海外vqn加速 | 蘑菇加速器 | 毛豆加速器 | 接码平台 | 接码S | 西柚加速器 | 快柠檬加速器 | 黑洞加速 | falemon | 快橙加速器 | anycast加速器 | ibaidu | moneytreeblog | 坚果加速器 | 派币加速器 | 飞鸟加速器 | 毛豆APP | PIKPAK | 安卓vqn免费 | 一元机场加速器 | 一元机场 | 老王加速器 | 黑洞加速器 | 白石山 | 小牛加速器 | 黑洞加速 | 迷雾通官网 | 迷雾通 | 迷雾通加速器 | 十大免费加速神器 | 猎豹加速器 | 蚂蚁加速器 | 坚果加速器 | 黑洞加速 | 银河加速器 | 猎豹加速器 | 海鸥加速器 | 芒果加速器 | 小牛加速器 | 极光加速器 | 黑洞加速 | movabletype中文网 | 猎豹加速器官网 | 烧饼哥加速器官网 | 旋风加速器度器 | 哔咔漫画 | PicACG | 雷霆加速